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1 Properties and Examples of Stabilizer Codes

1.1 Stabilizing Groups
Definition 1.1. |¢) is a stabilizer for P if it is a +1 eigenvector of P, i.e. P|¢) = |¥).
In a sense, [1)) is stable for P since P doesn’t change it.

Definition 1.2. Let S be a subgroup of n-qubit paulis st. V P.QQ € S PQ = QP and
VP € S P? = 1. Then we define the stabilizer code as C'(S) = {|) | P|y) = |y)VP € S}.

S is known as the stabilizer group, since it ”stabilizes” .

We need P, to commute so that 1 can satisfy both parity checks at the same time
(otherwise they anticommute and can’t both have +1 eigenvalues), and we need P? = I so
that P is measurable. So, the stabilizer group is defined by the following two properties on
its elements.

(1). Commutativity
(2). Involution

Definition 1.3. A Generating set is a set of pauli matrices {g;...q;} that generates S if
VP e S, P= Hézl g% b e {0,1}%. In this case, we say S =< gy...q >

Essentially, S =< gy ...¢; > if and only if every element of S can be written as a product of
some subset of generators.

Remark 1.4. We can always sort our list of generators [g; . .. ¢;] and reduce each component
to have exponenet 1 or 0 (if any element has exponent > 2 then we can take it mod 2, since
g? =I). So, each pauli can be written as g’l’1 -g;’z . .gf’l, b € {0,1}". From now on we assume
b; € {0, 1} without explicitly stating it.

Definition 1.5. A dependent set of generators is a set of generators {g; ...g;} such that
some g; = [[,; g;’j.

Example 1.6. g1 =X &I, go=1®Y, 93 =X BY is a dependent set of generators, since
93 = 9193

Claim 1.7. A set of generators is dependent if and only if I =[], gf", some b; # 0
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Proof. = Let {g1...g;} be dependent. Then for some g;, g; = H#i g]c-j. So, g2 = I =
g 11 ki gjc-j . So, I is a product of a nonempty set of generators.

< Let I =], gfi, some b; # 0. Now, pick k such that b, = 1. Now, g, - I =[], gf © G-
So, gr = [1, 95", ¢ € {0,1}". So, {g1...qi} is dependent. O

Claim 1.8. S =< gy...q > satisfies (1) and (2) iff {g1 ...} satisfies (1) and (2).

Proof. = Let {g ... g} satisfy (1), that is g;g; = g;9i- Now, VP € S, P = g" - g5 - ... g
and VQ € S, Q@ = g1 - g5* - ...q% Now, PQ = g™ - gi* - ...g" - g1 - g5 - ... g
Since g; and g; commute for all 4,j by hypothesis, we can move things around and get
PQ=gi® g5 ...g" gy g ... =QP.

Let {g1...q} satisfy (2), that is g7 = I. Now, VP € S, P = [[,¢;". Then, P? =
Higi%i = Hz(gf)q =[LI°=1

< Let S satisfy (1) and (2). Then, {¢; ... g} satisfies (1) and (2), since g; € S. O

Remark 1.9. Let g; ... g be independent. Let S =< g;...g, >. Then, dim(C(s)) = 2"
Then, Cls] is a [[n, n-1]]] QECC. The n — [ comes from the dimension being 2"~ (each
independent g; is a restriction reducing the number of valid vectors by 2), which is the same
as the dimension of n — [ encoded qubits.

Example 1.10. Let 3. =X R 271 X ® 1.
Let o =1Q®ZX®I1I®X.
Then g1go =X I XX ® X.
Now, g1 [v) = (=1)*[)) and g2 [¢) = (=1)"[¥)). So, gigz [) = (=1)*** [¢)).

Thus, if you know the value of g; [¢))on the generators, you can find the value of any
element of the stabilizer group. In particular, if |¢)) passes the parity checks for the generator
group, it passes them for the whole stabilizer group.

Definition 1.11. A pauli error is an error of the form |¢)) — E |[¢)), where E is a pauli.

1.2 Errors on v

We consider 3 types of possible errors.
1. First, consider the case where E € S. Then E 1)), = |¢);, so 1 doesn’t change.

2. Next, for a general Fy, and an Ey € S, |¢); — E1Ey|¢), = Ey|¢Y),, since Ey [¢), =
|4) ;. This is an example of degeneracy, where two errors (E;, EjE, both act the same).
Note if we can correct F;, we can correct £ F, for free.

3. Finally, consider a general error E. Let P € S, now, PE |¢), = £EP ), = £E |¢),.
In other words, P detects the error if and only if PE = —FEP, since then it gains a
minus sign. First, consider the case where £ € S. Then E |¢); = [¢);, so 1 doesn’t
change.



Definition 1.12. An error F is undetectable by S if VP € S, PE = EP (i.e. it commutes
with every element of our stabilizer).

Definition 1.13. The centralizer of S is N(S) = {E|E is undetectable by S}

Remark 1.14. Note that any error in S is in the centralizer of S. However, this is not a
concern since it doesn’t change [¢) ;.

Remark 1.15. Now, if £ € N(S) — S, then E cannot be detected, since it is a genuine error
but commutes with S.

Claim 1.16. The distance of our code C(S) is the smallest weight element in N(S) —S.

Proof. Now we prove the claim.

Note that C(s) has distance d iff (¢| E|¢)) = Op V weight < d Pauli’s E. For a pauli
error F to have weight < d, it cannot be in N(S) — 5. Then either E € S or E ¢ N(S), so
EP = —PE, P € S. In the first case, £ € S. Then (| E |¢) = (¢]|¢)) = 1. In the second

case, (Y| E|) = (Y| EP[¢) = = (Y| PE[Y) = = (Y[ E[¢). So, (¢| E|¢) = 0.

In both cases we get a constant, so the knill-laflame conditions are satisfied. Note that
P is hermitian. [

Proof. Here we give another more intuitive proof.

Let d = 2t +1 = smallest weight in N(S) —S. Consider Fy, Fy with weight < ¢. Then, either
FE4, E, should have different syndromes, or £} = FE,- P, P € S.
In the first case, our code is easily correctable, so only the second case needs proving.
Let B, and E, have the same syndromes. Then VP € S, PE, = (=1)’E\P and PE, =
(—1)°E, P, with the same b for both. This implies that By Ey P = (—1)°E,PE, = (—1)*PE, E,
PE1E,. So, E commutes with E; and Fy. So, E1Ey € N(S). But, EyEs has weight < 2¢,
so E1Ey ¢ (N(S) —95), so EyEy € S. Now, Fy - Ey = P, so Ey - (E\Ey) = Ey - (P), so
Ey; = FE, - P, as desired.

Now, we know E; and E, have the same impact on the code, and so we can still correct
them. O

1.3 Examples of Stabilizer Codes

Example 1.17. We consider Shor’s 9 qubit code. |0), = (|000)+|111))(|000)+|111))(|000)+
|111)), and |0), = (|000) — |[111))(]000) — |111))(]000) — [111}).

Now, our stabilizers for the Shor code are
1-6 Z1Zy, ZaZs, ZaZs, ZsZe, Znls, ZsZy
7-8 X1 XoX3X ;1 X5X6, Xy X5X6X7XsXg



Remark 1.18. We use the stabilizers 1 — 6 to ensure that within each group of 3 qubits,
their values are aligned. Stabilzers 7,8 ensure the inter-group phase is consistent. If 1) is a
+1 eigenvalue of all stabilizers, we have a valid 9-qubit logical Shor codeword.

Now, one element of N(S)— S is X; ... Xy. Trivially, X; - ... Xo commutes with any X
error. X-... Xy also commutes with Z;Z;, since X anticommutes with Z; and with Z;, giving
two minus signs when combined. So, Xj - ... Xy is in N(S). Now, X;-...Xg|0); =10),,
and X; ... Xy 1), = —|1);. So, this is a legitimate error (in fact its equivalent to Z) that
changes our state. Thus, X; -...Xg € N(S) — S
Notice how X7XsXq = Z;, too, since X7XsXo = X1 -...Xg-X1-...Xg, and X; -... Xg is in
our stabilizer group. This is an example of degeneracy. X7;XgXg is weight 3, so our code is
distance at most 3.

Another element of N(S) — S is Z; - Zy - Z7. First, it commutes with Z;Z;. Next,
Z1Z4Z7 overlaps twice with X - ... Xg and twice with X, - ... Xy, so it commutes (since
it anticommutes twice) with both. Next, 212,27 10), = |1);, and Z1Z,Z;|1); = |0);. So,
21Z4Z7 = XL-

Definition 1.19. N(S) is the set of "logical operators”. N(S)/S (or N(S) mod S) is
{E-S|E € N(S)}, where E- S ={EP|P € S}.

N(S)/S is a set of congruence classes, just like integers mod n.

Remark 1.20. For example, X7 - ... Xy, X;X2X3, and X, X5Xg would all appear in the
same set of N(S)/S, since they act equivalently. So, in a sense N(S)/S is the set of distinct
logical operators. Which logical operators you can use in general depends on your system.

Claim 1.21. Let S =< gy...g, > be independent. Then, [N(S)| = 7.

Intuitively, every pauli will commute or anticommute with N(S). So, g; will cut the size
of N(S) in half, as will g;. Furthermore, since |S| = 2!, |[N(S)/S| = Qf‘gl = 4n—,

Example 1.22. Consider a four qubit code with stabilizers X 8 X X & X, Z L LD Z.

Now, this is a [[4,2, 2]] code. There are 4 physical qubits, and 2 independent stabilizers,
so 2 logical degrees of freedom. Any singular error will cause a negation, but X X /11 will
change the code word to another valid code word. So, the distance is 2
Thus, our possible errors are I.X, 17, I(XZ), which send our code to |01) + |10), |00) — |11),
and |01) — |10) respectively. These are the bell basis states.

This code is used as an error detection code for weight 1 errors since it has distance 2.

Remark 1.23. For arbitrary even n, X", Z" gives us an [[n, n—2, 2|] quantum error correction
code. Note even if n = 2, this works and we get a [[2, 0, 2]] code. This always sends the same
thing (|00) + |11)) and is error detectable.
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