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1 Properties and Examples of Stabilizer Codes

1.1 Stabilizing Groups

Definition 1.1. |ψ⟩ is a stabilizer for P if it is a +1 eigenvector of P , i.e. P |ψ⟩ = |Ψ⟩.

In a sense, |ψ⟩ is stable for P since P doesn’t change it.

Definition 1.2. Let S be a subgroup of n-qubit paulis st. ∀ P,Q ∈ S PQ = QP and
∀P ∈ S P 2 = I. Then we define the stabilizer code as C(S) = {|ψ⟩ | P |ψ⟩ = |ψ⟩ ∀P ∈ S}.
S is known as the stabilizer group, since it ”stabilizes” ψ.

We need P,Q to commute so that ψ can satisfy both parity checks at the same time
(otherwise they anticommute and can’t both have +1 eigenvalues), and we need P 2 = I so
that P is measurable. So, the stabilizer group is defined by the following two properties on
its elements.

(1). Commutativity

(2). Involution

Definition 1.3. A Generating set is a set of pauli matrices {g1...gl} that generates S if
∀P ∈ S, P =

∏l
i=1 g

bi
i b ∈ {0, 1}l. In this case, we say S =< g1 . . . gl >

Essentially, S =< g1 . . . gl > if and only if every element of S can be written as a product of
some subset of generators.

Remark 1.4. We can always sort our list of generators [g1 . . . gl] and reduce each component
to have exponenet 1 or 0 (if any element has exponent ≥ 2 then we can take it mod 2, since
g2i = I). So, each pauli can be written as gb11 ·gb22 · . . . gbll , b ∈ {0, 1}l. From now on we assume
bi ∈ {0, 1} without explicitly stating it.

Definition 1.5. A dependent set of generators is a set of generators {g1 . . . gl} such that

some gi =
∏

j ̸=i g
bj
j .

Example 1.6. g1 = X ⊕ I, g2 = I ⊕ Y, g3 = X ⊕ Y is a dependent set of generators, since
g3 = g11g

1
2

Claim 1.7. A set of generators is dependent if and only if I =
∏

i g
bi
i , some bi ̸= 0
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Proof. ⇒ Let {g1 . . . gl} be dependent. Then for some gi, gi =
∏

j ̸=i g
cj
j . So, g2i = I =

gi
∏

j ̸=i g
cj
j . So, I is a product of a nonempty set of generators.

⇐ Let I =
∏

i g
bi
i , some bi ̸= 0. Now, pick k such that bk = 1. Now, gk · I =

∏
i g

bi
i · gk.

So, gk =
∏

i g
ci
i , c ∈ {0, 1}l. So, {g1 . . . gl} is dependent.

Claim 1.8. S =< g1 . . . gl > satisfies (1) and (2) iff {g1 . . . gl} satisfies (1) and (2).

Proof. ⇒ Let {g1 . . . gl} satisfy (1), that is gigj = gjgi. Now, ∀P ∈ S, P = g1
b1 · gb22 · . . . glbl

and ∀Q ∈ S, Q = g1
c1 · gc22 · . . . glcl . Now, PQ = g1

b1 · gb22 · . . . glbl · g1c1 · gc22 · . . . glcl .
Since gi and gj commute for all i, j by hypothesis, we can move things around and get
PQ = g1

c1 · gc22 · . . . gcll · gb11 · gb22 · . . . gbll = QP .
Let {g1 . . . gl} satisfy (2), that is g2i = I. Now, ∀P ∈ S, P =

∏
i g

ci
i . Then, P 2 =∏

i g
2ci
i =

∏
i(g

2
i )

ci =
∏

i I
ci = I.

⇐ Let S satisfy (1) and (2). Then, {g1 . . . gl} satisfies (1) and (2), since gi ∈ S.

Remark 1.9. Let g1 . . . gl be independent. Let S =< g1 . . . gl >. Then, dim(C(s)) = 2n−l.
Then, C[s] is a [[n, n-l]]] QECC. The n − l comes from the dimension being 2n−l (each
independent gi is a restriction reducing the number of valid vectors by 2), which is the same
as the dimension of n− l encoded qubits.

Example 1.10. Let g1 = X ⊗ Z ⊗ I ⊗X ⊗ I.
Let g2 = I ⊗ Z ⊗X ⊗ I ⊗X.
Then g1g2 = X ⊗ I ⊗X ⊗X ⊗X.
Now, g1 |ψ⟩ = (−1)a |ψ⟩ and g2 |ψ⟩ = (−1)b |ψ⟩. So, g1g2 |ψ⟩ = (−1)a+b |ψ⟩.

Thus, if you know the value of gi |ψ⟩on the generators, you can find the value of any
element of the stabilizer group. In particular, if |ψ⟩ passes the parity checks for the generator
group, it passes them for the whole stabilizer group.

Definition 1.11. A pauli error is an error of the form |ψ⟩ → E |ψ⟩, where E is a pauli.

1.2 Errors on ψ

We consider 3 types of possible errors.

1. First, consider the case where E ∈ S. Then E |ψ⟩L = |ψ⟩L, so ψ doesn’t change.

2. Next, for a general E1, and an E2 ∈ S, |ψ⟩L → E1E2 |ψ⟩L = E1 |ψ⟩L, since E2 |ψ⟩L =
|ψ⟩L. This is an example of degeneracy, where two errors (E1, E1E2 both act the same).
Note if we can correct E1, we can correct E1E2 for free.

3. Finally, consider a general error E. Let P ∈ S, now, PE |ψ⟩L = ±EP |ψ⟩l = ±E |ψ⟩L.
In other words, P detects the error if and only if PE = −EP , since then it gains a
minus sign. First, consider the case where E ∈ S. Then E |ψ⟩L = |ψ⟩L, so ψ doesn’t
change.
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Definition 1.12. An error E is undetectable by S if ∀P ∈ S, PE = EP (i.e. it commutes
with every element of our stabilizer).

Definition 1.13. The centralizer of S is N(S) = {E|E is undetectable by S}

Remark 1.14. Note that any error in S is in the centralizer of S. However, this is not a
concern since it doesn’t change |ψ⟩L.

Remark 1.15. Now, if E ∈ N(S)−S, then E cannot be detected, since it is a genuine error
but commutes with S.

Claim 1.16. The distance of our code C(S) is the smallest weight element in N(S)− S.

Proof. Now we prove the claim.

Note that C(s) has distance d iff ⟨ψ|E |ψ⟩ = OE ∀ weight < d Pauli’s E. For a pauli
error E to have weight < d, it cannot be in N(S)− S. Then either E ∈ S or E /∈ N(S), so
EP = −PE, P ∈ S. In the first case, E ∈ S. Then ⟨ψ|E |ψ⟩ = ⟨ψ|ψ⟩ = 1. In the second
case, ⟨ψ|E |ψ⟩ = ⟨ψ|EP |ψ⟩ = −⟨ψ|PE |ψ⟩ = −⟨ψ|E |ψ⟩. So, ⟨ψ|E |ψ⟩ = 0.

In both cases we get a constant, so the knill-laflame conditions are satisfied. Note that
P is hermitian.

Proof. Here we give another more intuitive proof.

Let d = 2t+1 = smallest weight in N(S)−S. Consider E1, E2 with weight ≤ t. Then, either
E1, E2 should have different syndromes, or E1 = E2 · P, P ∈ S.
In the first case, our code is easily correctable, so only the second case needs proving.
Let E1 and E2 have the same syndromes. Then ∀P ∈ S, PE1 = (−1)bE1P and PE2 =
(−1)bE2P , with the same b for both. This implies that E1E2P = (−1)bE1PE2 = (−1)2bPE1E2 =
PE1E2. So, E commutes with E1 and E2. So, E1E2 ∈ N(S). But, E1E2 has weight ≤ 2t,
so E1E2 /∈ (N(S) − S), so E1E2 ∈ S. Now, E1 · E2 = P , so E1 · (E1E2) = E1 · (P ), so
E2 = E1 · P , as desired.

Now, we know E1 and E2 have the same impact on the code, and so we can still correct
them.

1.3 Examples of Stabilizer Codes

Example 1.17. We consider Shor’s 9 qubit code. |0⟩L = (|000⟩+|111⟩)(|000⟩+|111⟩)(|000⟩+
|111⟩), and |0⟩L = (|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩).

Now, our stabilizers for the Shor code are

1-6 Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9

7-8 X1X2X3X4X5X6, X4X5X6X7X8X9
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Remark 1.18. We use the stabilizers 1 − 6 to ensure that within each group of 3 qubits,
their values are aligned. Stabilzers 7, 8 ensure the inter-group phase is consistent. If |ψ⟩ is a
+1 eigenvalue of all stabilizers, we have a valid 9-qubit logical Shor codeword.

Now, one element of N(S)− S is X1 · . . . X9. Trivially, X1 · . . . X9 commutes with any X
error. X1 ·. . . X9 also commutes with ZiZj, since X anticommutes with Zi and with Zj, giving
two minus signs when combined. So, X1 · . . . X9 is in N(S). Now, X1 · . . . X9 |0⟩L = |0⟩L,
and X1 · . . . X9 |1⟩L = − |1⟩L. So, this is a legitimate error (in fact its equivalent to Z̄L) that
changes our state. Thus, X1 · . . . X9 ∈ N(S)− S
Notice how X7X8X9 = Z̄L too, since X7X8X9 = X1 · . . . X9 ·X1 · . . . X6, and X1 · . . . X6 is in
our stabilizer group. This is an example of degeneracy. X7X8X9 is weight 3, so our code is
distance at most 3.

Another element of N(S) − S is Z1 · Z4 · Z7. First, it commutes with ZiZj. Next,
Z1Z4Z7 overlaps twice with X1 · . . . X6 and twice with X4 · . . . X9, so it commutes (since
it anticommutes twice) with both. Next, Z1Z4Z7 |0⟩L = |1⟩L, and Z1Z4Z7 |1⟩L = |0⟩L. So,
Z1Z4Z7 = X̄L.

Definition 1.19. N(S) is the set of ”logical operators”. N(S)/S (or N(S) mod S) is
{E · S|E ∈ N(S)}, where E · S = {EP |P ∈ S}.

N(S)/S is a set of congruence classes, just like integers mod n.

Remark 1.20. For example, X1 · . . . X9, X1X2X3, and X4X5X6 would all appear in the
same set of N(S)/S, since they act equivalently. So, in a sense N(S)/S is the set of distinct
logical operators. Which logical operators you can use in general depends on your system.

Claim 1.21. Let S =< g1 . . . gl > be independent. Then, |N(S)| = 4n

2l
.

Intuitively, every pauli will commute or anticommute with N(S). So, g1 will cut the size
of N(S) in half, as will gi. Furthermore, since |S| = 2l, |N(S)/S| = 4n

2l·2l = 4n−l.

Example 1.22. Consider a four qubit code with stabilizers X ⊕X ⊕X ⊕X,Z ⊕Z ⊕Z ⊕Z.

Now, this is a [[4, 2, 2]] code. There are 4 physical qubits, and 2 independent stabilizers,
so 2 logical degrees of freedom. Any singular error will cause a negation, but XXII will
change the code word to another valid code word. So, the distance is 2
Thus, our possible errors are IX, IZ, I(XZ), which send our code to |01⟩+ |10⟩, |00⟩ − |11⟩,
and |01⟩ − |10⟩ respectively. These are the bell basis states.
This code is used as an error detection code for weight 1 errors since it has distance 2.

Remark 1.23. For arbitrary even n, Xn, Zn gives us an [[n, n−2, 2]] quantum error correction
code. Note even if n = 2, this works and we get a [[2, 0, 2]] code. This always sends the same
thing (|00⟩+ |11⟩) and is error detectable.
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