Quantum Coding Theory

(UC Berkeley CS294, Spring 2024)

Lecture 7: Properties and Examples of Stabilizer Codes February 14, 2024

Lecturer: John Wright

Scribe: Theo Putterman

1 Properties and Examples of Stabilizer Codes

1.1 Stabilizing Groups

Definition 1.1. $|\psi\rangle$ is a stabilizer for P if it is a +1 eigenvector of P, i.e. $P|\psi\rangle = |\Psi\rangle$.

In a sense, $|\psi\rangle$ is stable for P since P doesn't change it.

Definition 1.2. Let S be a subgroup of n-qubit paulis st. $\forall P, Q \in S PQ = QP$ and $\forall P \in S P^2 = I$. Then we define the *stabilizer code* as $C(S) = \{|\psi\rangle \mid P |\psi\rangle = |\psi\rangle \forall P \in S\}$. S is known as the stabilizer group, since it "stabilizes" ψ .

We need P, Q to commute so that ψ can satisfy both parity checks at the same time (otherwise they anticommute and can't both have +1 eigenvalues), and we need $P^2 = I$ so that P is measurable. So, the stabilizer group is defined by the following two properties on its elements.

- (1). Commutativity
- (2). Involution

Definition 1.3. A *Generating set* is a set of pauli matrices $\{g_1...g_l\}$ that generates S if $\forall P \in S, P = \prod_{i=1}^l g_i^{b_i} \ b \in \{0,1\}^l$. In this case, we say $S = \langle g_1 \dots g_l \rangle$

Essentially, $S = \langle g_1 \dots g_l \rangle$ if and only if every element of S can be written as a product of some subset of generators.

Remark 1.4. We can always sort our list of generators $[g_1 \dots g_l]$ and reduce each component to have exponent 1 or 0 (if any element has exponent ≥ 2 then we can take it mod 2, since $g_i^2 = I$). So, each pauli can be written as $g_1^{b_1} \cdot g_2^{b_2} \cdot \dots g_l^{b_l}$, $b \in \{0,1\}^l$. From now on we assume $b_i \in \{0,1\}$ without explicitly stating it.

Definition 1.5. A dependent set of generators is a set of generators $\{g_1 \dots g_l\}$ such that some $g_i = \prod_{j \neq i} g_j^{b_j}$.

Example 1.6. $g_1 = X \oplus I$, $g_2 = I \oplus Y$, $g_3 = X \oplus Y$ is a dependent set of generators, since $g_3 = g_1^1 g_2^1$

Claim 1.7. A set of generators is dependent if and only if $I = \prod_i g_i^{b_i}$, some $b_i \neq 0$

Proof. \Rightarrow Let $\{g_1 \dots g_l\}$ be dependent. Then for some $g_i, g_i = \prod_{j \neq i} g_j^{c_j}$. So, $g_i^2 = I = g_i \prod_{i \neq i} g_j^{c_j}$. So, I is a product of a nonempty set of generators.

 $\stackrel{\circ}{\leftarrow} \text{Let } I = \prod_{i} g_{i}^{b_{i}}, \text{ some } b_{i} \neq 0. \text{ Now, pick } k \text{ such that } b_{k} = 1. \text{ Now, } g_{k} \cdot I = \prod_{i} g_{i}^{b_{i}} \cdot g_{k}.$ So, $g_{k} = \prod_{i} g_{i}^{c_{i}}, c \in \{0, 1\}^{l}.$ So, $\{g_{1} \dots g_{l}\}$ is dependent. \Box

Claim 1.8. $S = \langle g_1 \dots g_l \rangle$ satisfies (1) and (2) iff $\{g_1 \dots g_l\}$ satisfies (1) and (2).

 $\begin{array}{l} \textit{Proof.} \Rightarrow \text{Let } \{g_1 \ldots g_l\} \text{ satisfy } (1), \text{ that is } g_i g_j = g_j g_i. \text{ Now, } \forall P \in S, \ P = g_1^{b_1} \cdot g_2^{b_2} \cdot \ldots g_l^{b_l} \\ \text{and } \forall Q \in S, \ Q = g_1^{c_1} \cdot g_2^{c_2} \cdot \ldots g_l^{c_l}. \text{ Now, } PQ = g_1^{b_1} \cdot g_2^{b_2} \cdot \ldots g_l^{b_l} \cdot g_1^{c_1} \cdot g_2^{c_2} \cdot \ldots g_l^{c_l}. \\ \text{Since } g_i \text{ and } g_j \text{ commute for all } i, j \text{ by hypothesis, we can move things around and get} \\ PQ = g_1^{c_1} \cdot g_2^{c_2} \cdot \ldots g_l^{c_l} \cdot g_1^{b_1} \cdot g_2^{b_2} \cdot \ldots g_l^{b_l} = QP. \\ \text{Let } \{g_1 \ldots g_l\} \text{ satisfy } (2), \text{ that is } g_i^2 = I. \text{ Now, } \forall P \in S, \ P = \prod_i g_i^{c_i}. \text{ Then, } P^2 = I \\ \end{array}$

Let $\{g_1 \dots g_l\}$ satisfy (2), that is $g_i^2 = I$. Now, $\forall P \in S, P = \prod_i g_i^{c_i}$. Then, $P^2 = \prod_i g_i^{2c_i} = \prod_i (g_i^2)^{c_i} = \prod_i I^{c_i} = I$.

 \leftarrow Let S satisfy (1) and (2). Then, $\{g_1 \dots g_l\}$ satisfies (1) and (2), since $g_i \in S$.

Remark 1.9. Let $g_1 \ldots g_l$ be independent. Let $S = \langle g_1 \ldots g_l \rangle$. Then, $dim(C(s)) = 2^{n-l}$. Then, C[s] is a [[n, n-l]]] QECC. The n-l comes from the dimension being 2^{n-l} (each independent g_i is a restriction reducing the number of valid vectors by 2), which is the same as the dimension of n-l encoded qubits.

Example 1.10. Let $g_1 = X \otimes Z \otimes I \otimes X \otimes I$. Let $g_2 = I \otimes Z \otimes X \otimes I \otimes X$. Then $g_1g_2 = X \otimes I \otimes X \otimes X \otimes X$. Now, $g_1 |\psi\rangle = (-1)^a |\psi\rangle$ and $g_2 |\psi\rangle = (-1)^b |\psi\rangle$. So, $g_1g_2 |\psi\rangle = (-1)^{a+b} |\psi\rangle$.

Thus, if you know the value of $g_i |\psi\rangle$ on the generators, you can find the value of any element of the stabilizer group. In particular, if $|\psi\rangle$ passes the parity checks for the generator group, it passes them for the whole stabilizer group.

Definition 1.11. A pauli error is an error of the form $|\psi\rangle \to E |\psi\rangle$, where E is a pauli.

1.2 Errors on ψ

We consider 3 types of possible errors.

- 1. First, consider the case where $E \in S$. Then $E |\psi\rangle_L = |\psi\rangle_L$, so ψ doesn't change.
- 2. Next, for a general E_1 , and an $E_2 \in S$, $|\psi\rangle_L \to E_1 E_2 |\psi\rangle_L = E_1 |\psi\rangle_L$, since $E_2 |\psi\rangle_L = |\psi\rangle_L$. This is an example of degeneracy, where two errors $(E_1, E_1 E_2$ both act the same). Note if we can correct E_1 , we can correct $E_1 E_2$ for free.
- 3. Finally, consider a general error E. Let $P \in S$, now, $PE |\psi\rangle_L = \pm EP |\psi\rangle_l = \pm E |\psi\rangle_L$. In other words, P detects the error if and only if PE = -EP, since then it gains a minus sign. First, consider the case where $E \in S$. Then $E |\psi\rangle_L = |\psi\rangle_L$, so ψ doesn't change.

Definition 1.12. An error *E* is *undetectable by S* if $\forall P \in S$, PE = EP (i.e. it commutes with every element of our stabilizer).

Definition 1.13. The centralizer of S is $N(S) = \{E | E \text{ is undetectable by } S\}$

Remark 1.14. Note that any error in S is in the centralizer of S. However, this is not a concern since it doesn't change $|\psi\rangle_L$.

Remark 1.15. Now, if $E \in N(S) - S$, then E cannot be detected, since it is a genuine error but commutes with S.

Claim 1.16. The distance of our code C(S) is the smallest weight element in N(S) - S.

Proof. Now we prove the claim.

Note that C(s) has distance d iff $\langle \psi | E | \psi \rangle = O_E \forall$ weight $\langle d$ Pauli's E. For a pauli error E to have weight $\langle d$, it cannot be in N(S) - S. Then either $E \in S$ or $E \notin N(S)$, so EP = -PE, $P \in S$. In the first case, $E \in S$. Then $\langle \psi | E | \psi \rangle = \langle \psi | \psi \rangle = 1$. In the second case, $\langle \psi | E | \psi \rangle = \langle \psi | EP | \psi \rangle = - \langle \psi | PE | \psi \rangle = - \langle \psi | E | \psi \rangle$. So, $\langle \psi | E | \psi \rangle = 0$.

In both cases we get a constant, so the knill-laflame conditions are satisfied. Note that P is hermitian.

Proof. Here we give another more intuitive proof.

Let d = 2t + 1 = smallest weight in N(S) - S. Consider E_1, E_2 with weight $\leq t$. Then, either E_1, E_2 should have different syndromes, or $E_1 = E_2 \cdot P$, $P \in S$.

In the first case, our code is easily correctable, so only the second case needs proving. Let E_1 and E_2 have the same syndromes. Then $\forall P \in S$, $PE_1 = (-1)^b E_1 P$ and $PE_2 = (-1)^b E_2 P$, with the same *b* for both. This implies that $E_1 E_2 P = (-1)^b E_1 P E_2 = (-1)^{2b} P E_1 E_2 = P E_1 E_2$. So, *E* commutes with E_1 and E_2 . So, $E_1 E_2 \in N(S)$. But, $E_1 E_2$ has weight $\leq 2t$, so $E_1 E_2 \notin (N(S) - S)$, so $E_1 E_2 \in S$. Now, $E_1 \cdot E_2 = P$, so $E_1 \cdot (E_1 E_2) = E_1 \cdot (P)$, so $E_2 = E_1 \cdot P$, as desired.

Now, we know E_1 and E_2 have the same impact on the code, and so we can still correct them.

1.3 Examples of Stabilizer Codes

Example 1.17. We consider Shor's 9 qubit code. $|0\rangle_L = (|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle - |111\rangle), and <math>|0\rangle_L = (|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle).$

Now, our stabilizers for the Shor code are

- 1-6 $Z_1Z_2, Z_2Z_3, Z_4Z_5, Z_5Z_6, Z_7Z_8, Z_8Z_9$
- 7-8 $X_1X_2X_3X_4X_5X_6, X_4X_5X_6X_7X_8X_9$

Remark 1.18. We use the stabilizers 1 - 6 to ensure that within each group of 3 qubits, their values are aligned. Stabilzers 7, 8 ensure the inter-group phase is consistent. If $|\psi\rangle$ is a +1 eigenvalue of all stabilizers, we have a valid 9-qubit logical Shor codeword.

Now, one element of N(S) - S is $X_1 \cdot \ldots X_9$. Trivially, $X_1 \cdot \ldots X_9$ commutes with any X error. $X_1 \cdot \ldots X_9$ also commutes with $Z_i Z_j$, since X anticommutes with Z_i and with Z_j , giving two minus signs when combined. So, $X_1 \cdot \ldots X_9$ is in N(S). Now, $X_1 \cdot \ldots X_9 |0\rangle_L = |0\rangle_L$, and $X_1 \cdot \ldots X_9 |1\rangle_L = -|1\rangle_L$. So, this is a legitimate error (in fact its equivalent to \overline{Z}_L) that changes our state. Thus, $X_1 \cdot \ldots X_9 \in N(S) - S$

Notice how $X_7X_8X_9 = \overline{Z}_L$ too, since $X_7X_8X_9 = X_1 \cdot \ldots \cdot X_9 \cdot X_1 \cdot \ldots \cdot X_6$, and $X_1 \cdot \ldots \cdot X_6$ is in our stabilizer group. This is an example of degeneracy. $X_7X_8X_9$ is weight 3, so our code is distance at most 3.

Another element of N(S) - S is $Z_1 \cdot Z_4 \cdot Z_7$. First, it commutes with $Z_i Z_j$. Next, $Z_1 Z_4 Z_7$ overlaps twice with $X_1 \cdot \ldots X_6$ and twice with $X_4 \cdot \ldots X_9$, so it commutes (since it anticommutes twice) with both. Next, $Z_1 Z_4 Z_7 |0\rangle_L = |1\rangle_L$, and $Z_1 Z_4 Z_7 |1\rangle_L = |0\rangle_L$. So, $Z_1 Z_4 Z_7 = \bar{X}_L$.

Definition 1.19. N(S) is the set of "logical operators". N(S)/S (or $N(S) \mod S$) is $\{E \cdot S | E \in N(S)\}$, where $E \cdot S = \{EP | P \in S\}$.

N(S)/S is a set of congruence classes, just like integers mod n.

Remark 1.20. For example, $X_1 \cdot \ldots \cdot X_9$, $X_1 \cdot X_2 \cdot X_3$, and $X_4 \cdot X_5 \cdot X_6$ would all appear in the same set of N(S)/S, since they act equivalently. So, in a sense N(S)/S is the set of distinct logical operators. Which logical operators you can use in general depends on your system.

Claim 1.21. Let $S = \langle g_1 \dots g_l \rangle$ be independent. Then, $|N(S)| = \frac{4^n}{2^l}$.

Intuitively, every pauli will commute or anticommute with N(S). So, g_1 will cut the size of N(S) in half, as will g_i . Furthermore, since $|S| = 2^l$, $|N(S)/S| = \frac{4^n}{2^{l} \cdot 2^l} = 4^{n-l}$.

Example 1.22. Consider a four qubit code with stabilizers $X \oplus X \oplus X \oplus X, Z \oplus Z \oplus Z \oplus Z$.

Now, this is a [[4, 2, 2]] code. There are 4 physical qubits, and 2 independent stabilizers, so 2 logical degrees of freedom. Any singular error will cause a negation, but XXII will change the code word to another valid code word. So, the distance is 2

Thus, our possible errors are IX, IZ, I(XZ), which send our code to $|01\rangle + |10\rangle$, $|00\rangle - |11\rangle$, and $|01\rangle - |10\rangle$ respectively. These are the bell basis states.

This code is used as an error detection code for weight 1 errors since it has distance 2.

Remark 1.23. For arbitrary even n, X^n, Z^n gives us an [[n, n-2, 2]] quantum error correction code. Note even if n = 2, this works and we get a [[2, 0, 2]] code. This always sends the same thing $(|00\rangle + |11\rangle)$ and is error detectable.